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Abstract—Remote eye-gaze tracking provides a means for non-
intrusive tracking of the point-of-gaze (POG) of a user. For
application as a user interface for the disabled, a remote system
that is non-contact, reliable and permits head motion is very
desirable. The system-calibration-free Pupil-Corneal Reflection
(P-CR) vector technique for POG estimation is a popular method
due to its simplicity, however, accuracy has been shown to be
degraded with head displacement. Model-based POG estimation
methods were developed that improve system accuracy during
head displacement, however, these methods require complex
system calibration in addition to user calibration. In this paper
the use of multiple corneal reflections and point pattern matching
allows for a scaling correction of the P-CR vector for head
displacements as well as an improvement in system robustness to
corneal reflection distortion, leading to improved POG estimation
accuracy. To demonstrate the improvement in performance, the
enhanced multiple corneal reflection P-CR method is compared
to the monocular and binocular accuracy of the traditional single
corneal reflection P-CR method, and a model-based method of
POG estimation for various head displacements.

Index Terms—Single camera, remote, eye-gaze, tracking,
system-calibration-free, binocular, multiple corneal reflection,
pupil-corneal reflection

I. INTRODUCTION

EYE-GAZE tracking can be used as a human-machine
interface technique for individuals with high level spinal-

cord injuries or motor-neuron disorders who are unable to
operate standard interface tools such as the keyboard and
mouse [1]. While video-based eye-gaze tracking has great
potential for improving the quality of life of these individuals,
a number of key technical issues need to be improved upon.
While the requirements for remote eye-gaze tracking are
application dependent, in general, improvements are needed
in accuracy, precision, response time, reliability, cost, ability
to tolerate head motion and simplification of system and user
calibration requirements [2]. Reducing the need for system
calibration greatly simplifies the system design, potentially
lowering costs, while also simplifying the initial user setup
of the system. The objective of this paper is to describe the
methodology and experimental results showing that tracking a
pattern of multiple corneal reflections can be used to improve
the point-of-gaze (POG) accuracy for the system-calibration-
free Pupil-Corneal Reflection (P-CR) vector technique for
POG estimation.

Video-based eye-gaze tracking systems can be divided into
two categories, head mounted and remote.
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1) Head Mounted: Head mounted eye-gaze trackers typi-
cally use the Pupil-Corneal Reflection (P-CR) vector method
for POG estimation [3]. The accuracy of the P-CR method
degrades as the head is displaced from the calibration position
especially in depth [2]. Head mounted systems offer the benefit
of fixed head-to-camera displacement, however the system
must be firmly mounted to the head to prevent slippage. Head
mounted systems, if used over an extended period of time, can
result in fatigue and comfort can be a concern [4] [5].

The single corneal reflection used in the traditional P-CR
method can be problematic as larger eye rotations can result in
distortion of the reflection when it nears the boundary between
the cornea and sclera resulting in increased error. At even
larger eye rotations the corneal reflection may be lost entirely,
resulting in a complete failure of the system to estimate the
POG. To develop a more reliable P-CR image feature, Hua et
al [6] recently proposed a technique for head mounted POG
estimation that used a symmetric arrangement of four light-
emitting-diodes (LEDs) to generate a cross shaped pattern of
corneal reflections. A virtual point located at the intersection of
the horizontal and vertical lines connecting the matching pairs
of reflections was then used in forming the P-CR vector. To
compensate for the loss of reflections the two pairs of LED’s
must be placed orthogonally with respect to each other (i.e.
vertically or horizontally) and parallel to the camera image
plane.

2) Remote: Remote eye-gaze tracking offers greater com-
fort and ease of use as the user is not required to wear head-
mounted equipment. Early remote eye-gaze tracking systems
using the P-CR technique however required a relatively mo-
tionless head using bite bars or chin rests to prevent head to
camera displacements. A recent attempt by Cerrolaza et al to
overcome this limitation showed promise by tracking the rel-
ative displacement of two corneal reflections and normalizing
the P-CR vector accordingly [7]. While a chin rest was still
used to stabilize the head, it was observed that the normalized
P-CR vector performed better than the traditional P-CR vector
when the head is displaced with depth. As will be shown
later in this paper, unconstrained head and eye movements can
lead to the loss and distortion of the corneal reflections and
therefore result in inaccurate POG estimation. Using multiple
corneal reflections, along with a means to differentiate the
reflections, will be shown to compensate for corneal reflection
distortion and loss.

To allow for natural head motion in remote eye-gaze track-
ing, more complex techniques for POG estimation have been
developed based on models of the eye, camera and physical
system. An early remote system developed by Shih and Liu
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Fig. 1. The high level binocular eye-gaze tracking system block diagram is shown. The final POG may be estimated from either the left or right eye,
increasing reliability to the loss of an eye due to head motion. Alternatively, the final POG can be estimated as the average of the POG estimates from the
left and right eyes providing a more accurate estimate of the true POG.

[8] tracked both eyes using two remote cameras imaging at 30
Hz and mounted close to the subject’s eyes. System calibration
included stereo camera lens calibration [9], physical system
modeling of the computer screen, LEDs, and camera positions,
and per-user calibration to approximate parameters of the
eyes. While only two corneal reflections were required for
estimation of the POG, three reflections were used to provide
redundancy should one be lost due to eye rotation. An average
accuracy over six subjects of slightly better than 1◦ of visual
angle was reported. For this system however only a small
degree of head motion (4 x 4 cm with little depth motion)
was possible due to the proximity of the cameras to the eyes
and the limited depth of field of the lens.

In the system by Ohno et al, two cameras and a
pan/tilt/zoom mechanism were used to increase the allowable
range of head motion while achieving similar accuracy results
to Shih et al. A wide angle lens camera was used to direct
the narrow angle lens pan/tilt/zoom camera to track the eye,
however, the mechanical tracking mechanism was too slow to
keep up with fast head motions [10]. High speed galvanometer
mechanisms were investigated by Beymer et al for providing
fast mechanical tracking, however, the tracking mechanism
was significantly more complicated. The system required a
complex system calibration, and the use of two pairs of stereo
cameras led to a low system update rate of 10 Hz. [11]

For remote systems, typically only a single eye is tracked
due to the limited field of view of the camera. Tracking a single
eye is in general sufficient as both eyes tend to point to the
same position [12]. If both the left and right eye POG estimates
are known however, averaging of the two can potentially
reduce the overall error, as was observed by Cui et al for
head mounted eye-gaze tracking [13]. Tracking both eyes also
allows the system to continue operating when a single eye is
lost due to head motion.

Present Work: In the work presented here, a novel technique
for tracking a pattern of corneal reflections is presented to
enhance the performance of the system-calibration-free P-
CR POG estimation method. Tracking the corneal reflection
pattern improves the reliability of POG estimation by detecting
the loss and distortion of corneal reflections when both head
and eye rotations cause the reflections to move off the surface
of the cornea. The tracking technique presented here has fewer
restrictions on the placement of the light sources than the
method by Hua et al, as well as providing a mechanism
for detecting distortion of the reflections and not just the
complete loss. Tracking the scale and translation parameters
of the corneal reflection pattern will be shown to enhance
the performance of the P-CR method for operation in remote,

system-calibration-free, eye-gaze tracking to match that of the
more complex model-based method which requires consid-
erable system calibration. As the system provides binocular
estimates, a comparison of the binocular and monocular per-
formance will also be provided.

II. METHODS

A high level overview of the proposed system is outlined
in Fig. 1. In this system a single camera is used to record
images of the face in which both left and right eye tracking
is attempted. The identified image features are labeled as
coming from either the left or right eye and are then used
in the POG estimation algorithm. The image processing and
POG estimation stages are described in greater detail in the
following subsections.

A. Image Feature Processing

The P-CR and model-based POG estimation algorithms
require accurately identified pupil and corneal reflection image
features. The purpose of the image processing stage of the
eye-gaze tracking system is to extract these image features
accurately and rapidly. A novel corneal reflection identification
algorithm is then applied to the extracted corneal reflection
image features to check for possible loss or distortion of the
reflections.

1) Feature Extraction: The eye image features required
from the recorded images are the centers of the pupils and
the locations of the corneal reflections. Infrared light is used
for system illumination to enhance the performance of the
feature extraction, using the bright-pupil and image-difference
techniques [14] [15]. Using IR light generates the necessary
reflections off the cornea, as well as reducing the sensitivity
of the system to ambient lighting conditions. A ring of on-
axis lights generate the high contrast pupil in the bright-pupil
image, while a collection of off-axis point light sources are
used to generate an image with a dark pupil as well as multiple
corneal reflections. An ellipse is fit to each image feature
contour with the contour center location then identified as
the center of the ellipse [16]. The image feature extraction
procedure is described in greater detail in Hennessey et al
[17].

If the image feature extraction algorithm identifies a pupil
and corresponding pattern of corneal reflections in the image,
the first identified eye image is blanked out and a second
image feature search is performed for the second eye. When
both eyes are visible, the extracted image features can easily
be associated with either the left or right eye based on
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(a) Valid corneal reflections (b) Invalid corneal reflections

Fig. 2. A set of four valid corneal reflections are shown in Fig. 2(a) and
labeled corresponding to the generating IR light sources. The same set of four
light sources are used to generate the pattern shown in Fig. 2(b) in which the
eye has been rotated resulting in corruption of the reflection pattern. The
corrupted pattern illustrates the loss of one of the valid corneal reflections
(reflection 1 from Fig. 2(a)), the distortion of another (reflection 0 from Fig.
2(a)) as well the addition of spurious reflection off the surface of the sclera.

Algorithm 1 Corneal reflection pattern matching
Input: Pcenter pupil center; Qi, i = 1..M image points; Rj ,
j = 1..N reference points; thresh distortion threshold
Output: Identified corresponding Qi and Rj
points

1: distmin = inf
2: // Find index for closest image point Qα to center of pupil
3: α = arg mini ‖Qi − Pcenter‖
4: // Identify corresponding image and reference points
5: for j = 1..N do
6: // Translation from image to reference
7: Tj = Rj −Qα
8: for i = 1..M, i 6= α do
9: for k = 1..N, k 6= j do

10: // Dist. from each image pt. to reference pt.
11: dk = ‖(Tj +Qi)−Rk‖
12: // Label Qα at minimum overall dist.
13: if dk < distmin then
14: distmin = dk
15: Label Qα as Rj
16: end if
17: end for
18: β = arg mink{dk}
19: // Label Qi if minimum dist. is under threshold
20: if dβ ≤ thresh then
21: Label Qi as Rβ
22: end if
23: end for
24: end for

their relative displacements in the image. When only one
eye is visible to the camera some form of eye and face
tracking is required to identify which eye remains visible. A
wide variety of eye and face tracking techniques have been
developed including Kalman filtering [18], Support Vector
Machine [19], and Eigenfeatures [11]. Since system lighting
is already controlled, background segmentation [20] is used
here.

2) Corneal Reflection Pattern Matching: In a new approach
to corneal reflection tracking, the off-axis light sources are
used to generate a pattern of corneal reflections in the dark-
pupil image. The corneal reflection pattern can then be used to
enhance the performance of the POG estimation techniques.
For the P-CR POG estimation method, a single corneal re-
flection is required. For the model-based method two corneal
reflections are required for triangulation of the 3D center of
the cornea. Using three or more light sources to generate
multiple corneal reflections can be used to provide redundancy
should any reflection be corrupted or lost. Distortion or loss
of corneal reflections occurs when the reflection occurs near
the boundary between the cornea and the sclera or on the
sclera itself. The distortion of the reflections are due to the
different radius of curvature between the sclera and the cornea,
while the rougher surface of the sclera can cause valid image
reflections to disappear or spurious reflections to appear. An
image reflection is defined as valid if it is correctly matched
with a reference reflection and the corresponding source of the
IR light. A valid pattern of four corneal reflections are shown
in Fig. 2(a) while the same pattern is shown corrupted due to
eye rotation in Fig. 2(b).

Using multiple corneal reflections requires a means for
distinguishing the corneal reflection image points from one
another, as the POG estimation methods require the correspon-
dence between the light source and the generated reflection.
Many general techniques for point pattern matching have been
developed. For a literature survey see Cox and Jager [21]. The
corneal reflection point-pattern matching technique described
here is based on inter-point distances and is customized
for corneal reflection detection. The algorithm compensates
for translation, distortion, addition and deletion of corneal
reflections. For proper operation, the IR point light sources
must be placed such that at least two valid reflections off of the
surface of the cornea will always be visible to the camera, as a
single reflection is insufficient for the matching procedure. In
addition, unique displacements between all pairs of reflections
are required in order to provide a means for matching the valid
reflections with the corresponding IR point light sources.

To perform the matching operation a reference pattern is
required in which the valid corneal reflections are identified
and associated with their corresponding IR point light sources
as shown in Fig. 2(a). The reference pattern is created by ini-
tially recording a valid pattern of image reflections formed on
each of the eyes and manually identifying the corresponding
corneal reflections and IR light sources. Subsequent system
operation extracts the coordinates of the corneal reflection
image points (Qi) and searches for matching pairwise dis-
placements within the reference pattern points (Rj). A match
is identified if a displacement is found under a certain tunable
threshold value. This tunable threshold may be set to allow
for slight distortions in the corneal reflection pattern, while
corneal reflections resulting in larger distortions of the pattern
are rejected. Once an appropriate threshold level has been
determined, either experimentally or based on the maximum
distortion requirements of the POG estimation algorithms, the
parameter may be fixed and need no longer be adjusted. For
the system presented here a distortion threshold of 5 pixels
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Fig. 3. POG Estimation. The POG estimation processes are shown for the
enhanced P-CR method in Fig. 3(a), while the processes for the model-based
method are shown in Fig. 3(b). The enhanced P-CR method integrates the
corneal reflection tracking for centroid estimation with the rescaling of the
P-CR vector to compensate for head motion. For the model-based method the
’best corneal reflections’ are the two reflections located nearest to the center
of the pupil, as these are least likely to have been distorted.

was used successfully for all subjects.
To reduce the pattern search space it was noted that the

corneal reflection located closest to the pupil was least likely
to be distorted on the boundary between the cornea and sclera.
Accordingly the algorithm assumes that the corneal reflection
image point located closest to the center of the pupil image
will be valid. This image point is then used in each of the
pairwise comparisons as described in Algorithm 1.

While the algorithm compensates for translation, distortion,
addition and deletion of corneal reflections, it does not explic-
itly handle rotation or changes in scale between the reference
and image point patterns. As the points are reflections off of
a spherical surface, rotation of the image pattern should not
be present. As well, by using the tunable threshold for the
allowable distortion, the small changes in scale occurring due
to changes in depth of the subject’s eyes are accommodated.

B. POG Estimation

The two main techniques used for POG estimation in remote
eye-gaze tracking are the P-CR and model-based methods.
The traditional P-CR and model-based methods have been
enhanced here to take advantage of the multiple redundant
corneal reflections to enhance both reliability and the ability
to handle head motion. Each POG estimation algorithm is
outlined in Fig. 3 and will be described in the following
subsections.

1) Enhanced P-CR Vector: Traditionally the P-CR vector
(V = (vx, vy)) is formed in the recorded bright-pupil image
of the eye from the on-axis corneal reflection to the center
of the pupil. Through a user calibration procedure in which
the subject observes known points on the screen, the P-CR
vector is mapped to the POG (U = (ux, uy)) on the screen in
pixels. The mapping typically uses a second order polynomial

(a) Reference pattern (b) Missing reflections

(c) Missing reflections (d) Missing reflections

Fig. 4. In the figures shown, the centroid maintains its position relative to
the corneal reflection image points regardless of the loss or distortion of the
corneal reflections making up the pattern. In Fig. 4(b) through Fig. 4(d) the
centroid was correctly determined while up to two corneal reflection points
of the pattern were lost.

(1) where the parameters ai and bi are determined during
calibration [2].

ux = a0 + a1vx + a2vy + a3vxvy + a4v
2
x + a5v

2
y

uy = b0 + b1vx + b2vy + b3vxvy + b4v
2
x + b5v

2
y

(1)

Using a single corneal reflection to form the P-CR vector
can be problematic, as the reflection may be distorted or lost
during large eye rotations. To avoid the problem of lost or
distorted reflections the P-CR vector is instead formed from
the centroid of the corneal reflection pattern, based on the valid
corneal reflections identified by Algorithm 1.

The centroid Rc of the 2D corneal reflection reference
pattern is determined once based on the N reference positions
Rj = (rjx, rjy) using (2).

Rc =
1
N

∑
j=1..N

Rj (2)

The POG is then determined each system loop as shown in
the flowchart of Fig. 3(a). A set of M corneal reflection points
Qi = (qix, qiy), are first extracted from the recorded images
and matched with the reference points Rj using Algorithm
1. For each correctly matched point Qi to Rj an equation
is formed in which only the scale (s) and translation (T =
(tx, ty)) parameters are unknown (3).

Rj = s ·Qi + T (3)

For each iteration of the POG estimation algorithm, pro-
vided two or more matching pairs Qi and Rj are identified,
an overdetermined set of equations for s, tx and ty are formed
which are easily solved using a least squares approach.

To compute a robust estimate of the corneal reflection
pattern centroid Qc at run-time, the original reference pat-
tern centroid Rc is scaled and translated according to the
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determined scale and translation factors (4). Examples of the
resulting centroid at different eye rotations are shown in Fig.
4.

Qc =
1
s
· (Rc − T ) (4)

The P-CR vector may then be formed from the corneal
reflection pattern centroid Qc to the pupil center Pcenter using
(5). The resulting vector is robust to loss and distortion of the
corneal reflections, which otherwise would have distorted the
P-CR vector V had it been formed with a single Qi point
alone.

V = Pcenter −Qc (5)

One additional problem with the P-CR vector is that head
displacements in z from the calibration z-plane leads to
position degradation of POG estimation accuracy. Translation
of the head in depth results in a change in magnitude of the
P-CR image vector, even though the subject’s POG on the
screen may have remained constant. A simplified 2D system
with a single light source is shown in Fig. 5 to illustrate this
problem. The light rays follow the pin-hole lens equation (6)
with the projection di of the P-CR vector in the real world at
distance zi imaged through the pin hole lens with focal length
f onto the camera surface with image size Di.

Di

f
=
di
zi

(6)

In the 2D example shown di ∼= dcal, due to the tangential
reflection of rays off the surface of the cornea and the much
larger values of zi than the radius of the spherical cornea
surface which leads to (7).

Dcal =
zi
zcal

Di (7)

Since each of the corneal reflections in a corneal reflection
pattern behaves as in (7), in order to compensate for the
degradation in POG accuracy of the P-CR technique due to
head motion in depth, the P-CR vector is scaled back to the
calibration position using the ratio of the size of the corneal
reflection pattern in place of the ratio of zi to zcal in (7). When
calibration of the system first takes place, the average scale
scal of the corneal reflection patterns is recorded. The ratio of
the current scale s to the calibration scale scal is then used
to rescale all future P-CR vectors. The P-CR vector equation
using the corneal reflection pattern centroid in (5) is improved
further with the addition of rescaling in (8).

V ′ =
s

scal
· (Pcenter −Qc) (8)

2) Model-Based: The second method of estimating the
POG is based on 3D models of the eye and system as shown
in Fig. 3(b). The model-based method for POG estimation was
designed to inherently compensate for motion of the head, at
the expense of an increasingly complex algorithms and system
calibration. The model-based method requires 3D models of
the camera and lens, computer screen and eye. In addition to
the pupil image center, two corneal reflection images are also

Light source

Camera 
sensor

Focal point Calibration eye position Eye Position

f zcal
zi

Pupil Pupil

Cornea Cornea

Di

Dcal

dcal di

Fig. 5. Simplified schematic (2D and not to scale) of the eye located at
two depths with the pupil looking along the X-axis, illustrating the change
in the P-CR image vector with head displacements. The P-CR vectors di are
projected from distances zi, through the focal point of the camera lens with
focal length f , onto the camera surface forming the P-CR image vectors Di.

required to estimate the POG. The details of the model-based
POG estimation procedure can be found in Hennessey et al
[22].

The accuracy of the model-based method for POG esti-
mation allowing free head motion will be compared with
the accuracy of the enhanced P-CR method in the following
section. The POG estimation methods use image features
extracted from the same images in the comparison. The model-
based method requires exactly two corneal reflections however,
and since multiple corneal reflections are found in the images
a selection of two of the reflections must be made. To ensure
that the most reliable image information is used in the model-
based POG estimation method only the corneal reflections
least likely to be distorted are used. Since the distortion and
loss of reflections occurs as the points approach the boundary
of the cornea and sclera, the two reflections located closest to
the center of the pupil are chosen for the model-based method.

3) Binocular Estimation: The POG estimation methods
can be performed independently for the left and right eyes
resulting in two POG estimates, one for each eye. The use of
binocular averaging of the left and right eye POG estimates
has the potential for improving overall accuracy [13]. As
healthy eyes generally observe the same point in space, the
left and right eye POG estimates should be located at the
same position. Approximations used in the POG estimation
algorithms however may lead to symmetric errors for the left
and right eyes. Averaging of the two estimates may then result
in improving overall accuracy for both the P-CR and model-
based systems by cancelling some of the error as will be shown
in the following experiments. Additionally, in the event that
one eye is located outside the field of view of the camera,
or the POG for one eye is unable to be computed due to
corrupt image features, the results of POG estimation for the
remaining eye may be used.

III. EXPERIMENTAL METHODS AND RESULTS

A. Experimental Hardware

The evaluation of the proposed methods was performed on
the eye-gaze tracking system shown in Figure 6. A single
DragonFly Express camera from Point Grey Research with a
fixed focal length lens was located below the computer screen
and used to record images of the face and eyes. The single
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Fig. 6. The eye-gaze tracking system is shown. The camera is located below
the computer screen, with the camera lens surrounded by the ring of on-
axis lighting. There are four off-axis point light sources located around the
computer screen. The microcontroller used for synchronization of the on and
off-axis lighting with the camera shutter is located in the lower left portion
of the image.

camera used had a sensor resolution of 640 x 480 pixels which
streamed video over the Firewire 1394b data bus at 200 frames
per second. An IR ring surrounding the camera lens was used
to generate the on-axis lighting for the bright pupil. The off-
axis light sources were comprised of four clusters of seven,
880 nm, IR LED’s located around the computer screen. A
microcontroller was used to synchronize the camera shutter
with the on and off-axis LED lighting. Extruded aluminum
rails formed a mechanical mounting structure to which the
IR point light sources were attached and the displacements
between the lights, camera and screen fixed. For the model-
based POG estimation method the camera lens was calibrated
with the Matlab Camera Calibration Toolbox [23], while the
physical locations of the camera, screen and LEDs were mea-
sured manually. For the P-CR method no system calibration
was required.

The computer screen was a 17” LCD with a resolution
of 1280 x 1024 pixels and dimensions of 38 cm in width
and 30 cm in height. The computer had a 2.66 GHz Intel
Core 2 processor and 2 gigabytes of RAM. All algorithms
were implemented in C++ with the open source OpenCV
[24] computer vision libraries used for image processing.
Given the processing power available, the software developed
was capable of processing the single camera video stream
at full frame rates. The average execution time required for
each processing stage was recorded as listed in Table I. The
recorded times were averaged over 1 second of operation and
measured when both eyes were visible to the camera.

With the high speed sampling rate of 200 Hz, filtering was
used to smooth out noise from the system and the inherently
jittery eye motions [17] [1]. A rectangular FIR low pass filter
(moving window average) with a filter order of 7 samples, or
35 ms, was used to smooth the POG estimates.

TABLE I
PROCESSING TIMES

Activity Processing Time (ms)
Time budget per frame 5.0

Image feature extraction 1.65
Corneal reflection pattern matching 0.022
P-CR POG estimation 0.15
Model-based POG estimation 0.30
Data logging & display 0.38

Processing time used 2.5

B. Evaluation of Reliability and Accuracy

Methods: The performance of the proposed algorithms
were evaluated with an experiment comprised of 7 different
subjects. The subjects included 6 males and 1 female, with
ages ranging from 24 to 31 years old. Two subjects wore
contact lenses while the remaining had uncorrected vision.
The ethnicity of the subjects was 3 Caucasian, 1 Hispanic,
2 Middle Eastern and 1 Indian.

The experiment was designed to provide a comparison
of: 1) Reliability - the number of times any one corneal
reflection was lost compared with the number of times the
corneal reflection pattern centroid (requiring any two corneal
reflections) was unable to be estimated, 2) POG method
accuracy - the difference between the average accuracy of
the traditional P-CR, enhanced P-CR using rescaling, and the
model-based method at three different head depths, and 3)
Monocular vs binocular accuracy - the difference in average
accuracy between the POG estimated by the left, right and
average of the two eyes.

The experimental procedure had each test subject begin with
a nine point user calibration at the midpoint of the depth
of focus of the camera lens, approximately 62 cm from the
screen. After calibration, each subject was asked to move
his/her head towards the screen until just before the image
features became too blurred to properly track the eyes, due to
the limited depth of focus. At this point the extracted image
features and the POG using each POG estimation method was
recorded at each point on a 3 x 3 grid across the screen. The
9 point data collection procedure was repeated with the head
located back at the middle of the depth of focus (roughly the
original calibration distance) and again with the head as far
back as possible before the image features again became out
of focus. At each calibration or evaluation position the subject
orally indicated that they were observing the known position,
at which point a marker was set in the recorded data stream
and the test point moved to the subsequent position. None
of the screen positions used for the evaluation coincided with
any of the screen positions used for the calibration. The screen
positions used for calibration and evaluation are listed in Table
II.

Results: The number of times each of the on-axis or off-axis
corneal reflections were lost at each of the 9 points, at each of
3 depths, for the 7 subjects was determined from the recorded
image feature data. The number of times that fewer than two
valid off-axis corneal reflections were available, resulting in
an inability to estimate the centroid, was also determined.
The percentage of lost corneal reflections compared with the
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TABLE II
CALIBRATION AND EVALUATION POSITIONS

Position Calibration (pixels) Evaluation (pixels)
X Y X Y

1 67 0 0 0
2 703 67 636 0
3 1270 67 1273 0
4 67 438 0 508
5 568 438 636 508
6 1203 572 1273 508
7 0 943 0 1017
8 568 943 636 1017
9 1203 1010 1273 1017

percentage of lost centroid positions (which required at least
two valid reflections) was determined for each of the subject’s
left and right eyes and summarized in Table III, where the
off-axis corneal reflections are identified as labeled in Fig.
4(a). The 3D positions of the eyes were determined from the
model-based method for POG estimation, which also provides
estimates for the 3D position of the center of the cornea of
each eye. The average eye depth over the 7 subjects for the
close position was 58 cm, for the middle position 62 cm and
for the far position 66 cm.

TABLE III
CORNEAL REFLECTION LOSS FOR EACH EYE AS A PERCENTAGE OF TOTAL

POSSIBLE AT THREE HEAD DEPTHS.

Corneal Close (%) Middle (%) Far (%)
Reflection L R L R L R

Off-axis (0) 6 27 2 5 5 16
Off-axis (1) 8 2 3 0 11 2
Off-axis (2) 10 6 10 2 6 6
Off-axis (3) 14 16 2 5 5 8

On-axis 0 3 0 2 0 0
Centroid loss 0 0 0 0 0 0

At each test position at each depth the POG was estimated
for both the left and right eyes using each of the three POG
estimation algorithms, traditional P-CR, enhanced P-CR and
model-based. Calculating the POG with each POG estimation
algorithm at the same time on the same recorded images
allowed for a direct comparison between the performance of
the different methods. For each test position, the accuracy was
computed as the distance between the evaluation marker and
the output of the FIR smoothing filter. The error averaged over
the 7 subjects is shown in Table IV. In addition to the average
POG error from the left and right eyes, the binocular POG
error is also shown. The POG accuracy can be converted from
centimeters to degrees of visual angle given the depths of the
eyes. For the enhanced P-CR method an accuracy of 0.85 cm
was achieved at the middle position for the binocular average
of the left and right eye POG, which would then correspond
to a visual angle accuracy of 0.79◦. At each head depth the
average scaling factor used to correct the P-CR vector was also
recorded. At the close position (58 cm) an average corneal
reflection pattern scale of 1.12 was observed, at the middle
position (62 cm) an average of 0.99 was observed while at
the far position (66 cm) an average of 0.90 was observed.

TABLE IV
AVERAGE POG ESTIMATION ERROR AT THREE HEAD DEPTHS

Average Error (cm) Standard Dev. (cm)
Method Left Right Binocular Binocular
Close Position (d = 58cm)

Trad. P-CR 2.92 3.11 2.84 1.89
Enha. P-CR 1.35 1.67 1.02 0.53
Model-Based 1.18 1.25 1.01 0.63

Middle Position (d = 62cm)
Trad. P-CR 1.62 1.64 1.34 0.77
Enha. P-CR 1.26 1.37 0.85 0.44
Model-Based 1.18 1.16 0.87 0.58

Far Position (d = 64cm)
Trad. P-CR 3.07 2.35 2.48 2.30
Enha. P-CR 1.97 1.54 1.34 2.10
Model-Based 1.33 1.23 1.00 0.62

* Convert to ◦ visual angle using (e = error): θ = 2 · tan−1
(

e
2

· 1
d

)

C. System Model Simulation

Methods: To verify the observed scaling behavior of the P-
CR vector and the resulting performance of the enhanced P-CR
rescaling technique proposed, a model of the eye-gaze tracking
system was developed. The model used the Matlab based
open-source Software Framework for Simulating Eye Trackers
developed by Böhme et al [25]. Using this framework, a model
of the real system shown in Fig. 6 was developed consisting
of a single camera and four light sources.

To determine the corneal reflection image locations the
cornea of the eye is modeled as a spherical surface, off which
light rays cast from the IR point light sources are reflected. The
reflections off the cornea are traced through the focal point of
the pin-hole camera model and onto the surface of the camera
sensor as shown in Fig. 7. Given the pixel size and resolution
of the camera sensor, the simulated camera image locations
of the corneal reflections can be determined. To generate the
simulated pupil center image, the 3D center of the pupil is ray-
traced out of the eye, accounting for refraction at the surface of
the cornea, through the pinhole camera focal point and onto the
camera sensor surface. The algorithms outlined in Section II
were then applied to form the P-CR vector used in calibration
and evaluation of the system.

The nine point calibration procedure took place at the 62
cm head depth, and used the same calibration screen positions
as listed in Table II. The simulated eyes were then located
from 40 to 120 cm in depth at 1 cm intervals and both the
average POG estimation accuracy across the nine evaluation
points, as well as the scale of the corneal reflection patterns
were determined.

Results: The average accuracy of the simulation and the
scale of the corneal reflection pattern, normalized with the cal-
ibration position scale scal, over the head positions evaluated
are shown in Fig. 8.

For comparison, the scale of the simulated corneal reflection
patterns at each of the three real-world experiment head depths
evaluated were determined to be 1.15 at the close position, 1.0
at the middle position (the same position as the calibration
position), and 0.88 at the far position. The simulation average
error at the three head depths for the left, right and binocular
averaged eyes are shown below in Table V.
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Fig. 7. The system model used for simulation is comprised of four light
sources, a single camera and the computer screen. The world coordinate origin
is located at the focal point of the pin-hole camera, with the positive X-axis
to the right, the positive Y-axis up and the positive Z-axis towards the user.
Rays are shown cast from the IR light sources, reflected off the spherical
cornea of the left and right eyes, through the focal point of the lens and onto
the surface of the camera sensor.

TABLE V
AVERAGE POG ESTIMATION ERROR AT THREE HEAD DEPTHS FROM

SIMULATION

Average Error (cm)
Method Left Right Binocular
Close Position (58 cm)

Trad. P-CR 3.38 3.14 3.26
Enha. P-CR 0.29 0.53 0.41

Middle Position (62 cm)
Trad. P-CR 0.51 0.58 0.54
Enha. P-CR 0.51 0.58 0.54

Far Position (64 cm)
Trad. P-CR 3.64 3.59 3.61
Enha. P-CR 0.74 0.66 0.70

IV. DISCUSSION

When the eye is rotated to view different points on the
screen, the corneal reflections translate across the surface of
the cornea. In remote eye-gaze tracking, translation of the
head also results in corneal reflection translations, unlike head
mounted systems where the head to camera displacements
are fixed. At certain orientations of the head and eye, the
corneal reflections may be blocked by eyelashes, distorted on
the boundary between the cornea and sclera, or lost on the
rougher surface of the sclera due to diffuse reflection. An
experiment was performed in which the corneal reflections
were tracked over 189 different head and eye positions as listed
in Table III. As seen from the table, over the 7 subjects tested,
if only a single on-axis or off-axis corneal reflection was used
to form the P-CR vector the system would have been unable to
determine the POG up to 3% or 27% of the time respectively.
Using the centroid of the corneal reflection pattern to compute
the scaled P-CR vector however, resulted in a POG estimate
for all head positions and eye rotations as there was no loss
of the centroid shown in Table III. Consequently the use of
multiple redundant corneal reflections results in a more reliable
system for POG estimation in which head motion is allowed.

An additional benefit of the pattern matching and redundant
corneal reflections is apparent when the system user is wearing
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(b) Head displacement average error

Fig. 8. The simulator was used to determine the change in scale of the
coreneal reflection pattern as the head was displaced in depth from 40-120 cm
at 1 cm intervals as shown in Fig. 8(a), normalized at 62 cm by scal as in (8).
Also shown in Fig. 8(a) are the average corneal reflection pattern scale values
from the multiple subject experiment at the three head depths evaluated. The
average error for the traditional vs. enhanced P-CR POG estimation methods
for the simulated eye-gaze tracking system are shown in Fig. 8(b) at 1 cm
intervals from 40-120 cm.

(a) Eye-glass Reflections (b) Reflections Avoided

Fig. 9. When eye-glasses are worn the IR light sources may reflect off
the surfaces of the lenses. In Fig. 9(a) additional reflections can be seen off
both the front and back surface of the eye-glass lens, however, the pattern
matching algorithm is able to reject these additional reflections and correctly
identify the corneal reflection pattern. In Fig. 9(b) the eye-glass lens reflections
were positioned to obscured the corneal reflection pattern, at which point the
offending light source was turned off and the remaining corneal reflections
identified through pattern matching.

eye-glasses. Eye-glasses commonly cause problems due to
reflections off the surface of the lenses. These reflections can
be identified and discarded through the use of the corneal
reflection pattern matching algorithm, as shown in Fig. 9.
Provided redundant light sources are available, in the event that
the eye-glasses reflection overlaps and obscures the corneal
reflection pattern, the offending IR light source may be turned
off and the remaining reflections identified with the pattern
matching algorithm.

Tracking the corneal reflections provides an estimate of the
scale and translation of the corneal reflection pattern. In the
multi-subject experiment, the traditional P-CR, enhanced P-
CR and model-based methods were each used to estimate the
POG at the same time, using the same source image data, to
compare the accuracy of the three POG estimation methods.
The average error across the entire screen for the binocular
(averaged) eyes using each of the three POG estimation
methods was compared using a one-way repeated measures
analysis of variance (ANOVA) at each of the three depths
tested. The SPSS software package was used for the statistical
analysis.
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At the close distance (F(2,18)=7.75, p<0.05) and far dis-
tance (F(2,18)=13.00, p<0.05) a statistically significant differ-
ence was found between the POG estimation methods. A post-
hoc analysis showed that the statistically significant difference
(at the 0.05 level) was between the traditional P-CR method
and both the enhanced P-CR and model-based methods. The
ability of the enhanced P-CR method to handle changes in
head depth was shown to improve to match that of the model-
based method as no statistically significant difference was
observed between the two methods. At the middle depth,
no statistically significant differences between the accuracies
of the POG estimation techniques were found (F(2,18)=3.89,
p≥0.05). No improvement of the enhanced P-CR method
over the traditional method at the middle depth was expected
however, as the user calibration was originally performed
at approximately the same depth. Overall POG estimation
accuracies as good as 0.85 cm or 0.79◦ of visual angle were
observed with the enhanced P-CR. It should be noted that
while the enhanced P-CR method was shown to improve the
POG estimation accuracy over the head depths evaluated, a
number of limitations restrict the practical capabilities of this
technique. These limitations include the loss of image focus
due to limited depth of field as well as the reduction in spatial
resolution as the head is displaced further from the camera
sensor, resulting in features imaged over a smaller number of
sensor pixels.

The average error achieved by the enhanced P-CR procedure
presented here is comparable to the results observed by
Cerrolaza et al [7], under similar experimental conditions.
Their best average error was 1.08 cm, 0.42 cm and 1.33 cm
at the close, middle, and far distances respectively, assuming
a similar screen size and resolution, as their results must
be converted from pixels. Unlike the more robust multiple
corneal reflection pattern matching technique proposed here,
their method uses only two corneal reflections which may be
susceptible to error should distortion of one corneal reflection
occur due to certain eye or head rotations. A chin rest was
used in their experiments to fix the subject’s heads, ensuring
proper head placement and valid image features. In addition
the chin rest made it possible to exactly relocate the head
to the middle (calibration) position, resulting in the improved
performance with respect to the middle head position of the
free head system presented here.

Binocular eye-gaze tracking allowed for averaging of the left
and right eye POG estimates to potentially increase the overall
system accuracy through averaging. For the remote eye-gaze
tracking system presented here, the left, right and binocular
POG accuracy results of the three POG estimation methods at
the middle depth were analyzed with one-way repeated mea-
sures ANOVAs. For both the enhanced P-CR (F(2,18)=8.86,
p<0.05) and model-based (F(2,18)=7.71, p<0.05) methods,
the binocular POG estimation accuracy was statistically better
(at the 0.05 level) than the POG accuracy of both the left
or the right eyes alone. For the traditional P-CR method, no
statistically significant difference was observed (F(2,18)=2.85,
p≥0.05). Binocular tracking with averaging of the left and
right eye POG estimates in remote eye-gaze tracking therefore
equals or improves on the accuracy of monocular tracking

alone.
A simulation was developed to further validate the proposed

methods and results of the real-world experiment. The scale
of the corneal reflection patterns at each head depth were
found to be closely matched between the simulation and real-
world experiment at each head depth: 1.15 vs 1.12 at the
58 cm head depth, 1.0 vs 0.99 at the 62 cm head depth
and 0.88 vs 0.90 at the 66 cm head depth respectively. The
similarity in scale between the simulation and average of
the multiple subject experiment indicate a reasonable match
between the approximations used in the simulation (spherical
cornea surface and population averages for the eye model
parameters) and the real-world.

As with the real-world experiment, an analysis and sim-
ulation showed that rescaling of the P-CR vector can be
used to improve the accuracy of POG estimation when the
head is displaced in depth. In the simulation however, there
was no improvement in accuracy from averaging the left
and right eye POG estimates, since there was no difference
between the simulated left and right eye (other than their
respective positions) and no cancellation of symmetric errors
were possible.

V. CONCLUSIONS

Remote eye-gaze tracking requires the ability to handle both
head and eye motion since the camera-to-eye displacement
is not fixed as it is with head mounted systems. The use of
the system-calibration-free P-CR method for POG estimation
in remote eye-gaze tracking systems has been problematic as
the P-CR method suffers from degradation in accuracy with
head motion. To prevent the degradation in accuracy with
head displacements towards or away from the screen, multiple
corneal reflections and point pattern matching techniques were
developed to provide a scaling correction for the P-CR vector.
Using the centroid of the corneal reflection pattern to form
the P-CR vector also improved the robustness to loss and
distortion of the corneal reflections due to head and eye
movement.

With displacements of the head in depth it was shown
that the performance of the enhanced P-CR method matched
that of the model-based method, while avoiding the need for
complex system calibration. Accuracy of the enhanced P-CR
method was found to be 2.8 times better than the traditional
method (from an average error of 2.8 cm to 1.0 cm) at the
near depth displacement of the head from the user calibration
position, while an improvement of 1.8 times was observed
at the far displacement (2.5 cm to 1.3 cm average error).
A simulation based on a model of the system verified the
scaling behavior of the P-CR vector with head displacements,
as well as the improvement in performance when rescaling
takes place. It was also shown that over 7 different subjects,
binocular averaging of the left and right eye POG estimates
resulted in an accuracy that was statistically equal to or better
than the monocular performance for the traditional P-CR,
enhanced P-CR and model-based POG estimation methods.

For system users who have difficulty maintaining a rela-
tively fixed head position the ability to handle head motion
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is a key usability factor in eye-gaze tracking. In the system
presented here the accuracy and reliability of tracking im-
proved using a combination of multiple corneal reflections and
rescaling of the P-CR vector. Using the techniques presented,
the enhanced P-CR, system-calibration-free, POG estimation
method was shown to improve to match the performance
of the more complex model-based method requiring system
calibration.
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