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Abstract—The precision of point-of-gaze (POG) estimation dur-
ing a fixation is an important factor in determining the usability of
a noncontact eye-gaze tracking system for real-time applications.
The objective of this paper is to define and measure POG fixation
precision, propose methods for increasing the fixation precision,
and examine the improvements when the methods are applied
to two POG estimation approaches. To achieve these objectives,
techniques for high-speed image processing that allow POG sam-
pling rates of over 400 Hz are presented. With these high-speed
POG sampling rates, the fixation precision can be improved by
filtering while maintaining an acceptable real-time latency. The
high-speed sampling and digital filtering techniques developed
were applied to two POG estimation techniques, i.e., the high-
speed pupil–corneal reflection (HS P-CR) vector method and a
3-D model-based method allowing free head motion. Evaluation
on the subjects has shown that when operating at 407 frames per
second (fps) with filtering, the fixation precision for the HS P-CR
POG estimation method was improved by a factor of 5.8 to 0.035◦

(1.6 screen pixels) compared to the unfiltered operation at 30 fps.
For the 3-D POG estimation method, the fixation precision was
improved by a factor of 11 to 0.050◦ (2.3 screen pixels) compared
to the unfiltered operation at 30 fps.

Index Terms—Eye-gaze tracking, fixation precision, head free,
high speed, human–computer interface, noncontact, remote.

I. INTRODUCTION

EYE-GAZE tracking systems offer great promise as an
interface between humans and machines. The eye gaze

can provide insight into the intention of a user, as a user typ-
ically looks at objects of interest before acting upon them [1].
Real-time eye-gaze tracking systems allow dynamic interaction
between the user and the system using the human visual system
for both feedback and control [2]. Tracking the fixations of
a user provides a means for using the eye-gaze information
as a pointing device [3]. However, the use of eye gaze as an
input modality has not had widespread appeal with the general
population due in part to the shortcomings of the current eye-
gaze tracking technology. Some of the key issues that must be
improved upon are accuracy, precision, latency, ease of use,
comfort, and cost [4], [5].
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Recent advances in the development of noncontact video-
based eye-gaze tracking systems have removed the need for
contact with the user and have greatly improved the user’s
comfort [6]. Noncontact systems coupled with advanced point-
of-gaze (POG) estimation algorithms that compute the location
of the eye in 3-D space can now operate without significantly
restricting the user’s head motion. The increased freedom of
motion greatly improves the ease of use of the system.

Eye-gaze tracking systems in general and noncontact video-
based systems in particular suffer from low precision or fluctu-
ating fixation estimates. The low precision is caused not just
by sensor and system noise but is also due in part to the
natural motions of the unconstrained head and eye. Consider-
able research has focused on developing real-time applications
that compensate for the low precision including the use of
large pointing targets [7], [8], fisheye lenses [9], and enhanced
pointing algorithms such as MAGIC pointing [3] and the Grab
and Hold Algorithm [10].

In this paper, a definition for fixation precision in the context
of eye-gaze tracking is provided. Techniques for improving the
precision of noncontact video-based eye-gaze tracking systems
at very high sampling rates are described. The high-speed
sampling techniques developed are evaluated at each of three
different POG sampling rates on the high-speed pupil–corneal
reflection (HS P-CR) vector method and a 3-D model-based
POG method allowing free head motion. Given the achieved
performance of each POG method, it is shown how digital
filtering can be used to improve the fixation precision at each
POG sampling rate for both methods.

II. BACKGROUND

A. Eye Movements

Although the surrounding world appears stable, the head
and eyes are continuously in motion, and the images formed
on the retinas are constantly changing. The stable view of
the external world is only an artificially stabilized perception.
Natural human vision is typically made up of short relatively
stable fixations connected by rapid reorientations of the eye
(saccades). It is during fixations that the sensory system of
the eye collects information for cognitive processing. During
saccades, the sensitivity of the visual input is reduced [11].

Fixations typically remain within 1◦ of visual angle and
last from 200–600 ms [1]. While fixating, the eye slowly
drifts, with a typical amplitude of less than 0.1◦ of visual
angle and a frequency of oscillation of 2–5 Hz. This drift
is corrected by small fast shifts in eye orientation called
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microsaccades, which have a similar amplitude to the drift. Su-
perimposed on this motion is a tremor with a typical amplitude
of less than 0.008◦ of visual angle with frequency components
from 30–100 Hz and at times up to 150 Hz [12]. These small
eye motions during a fixation are thought to be required to
continuously refresh the sensors in the eye, as an artificially
stabilized image will fade from view [13].

Saccades most frequently travel from 1◦ to 40◦ of visual an-
gle and last for 30–120 ms. Between saccades, there is typically
a 100- to 200-ms delay [1]. A number of other task-specific
eye motions exist, such as smooth pursuit, nystagmus, and
vergence, which are not often found in the normal interaction
between a user and a desktop monitor. The focus of this paper
is on the POG estimates during fixations, which are located
between saccadic reorientations of the eye.

B. Fixation Detection and Filtering

A clear identification of the beginning and end of a fixation
within the raw eye data stream is important as filtering should
only be performed on POG data located within a single fixation.
Poor identification of the beginning or end of a fixation may re-
sult in a degradation in fixation precision by incorporating POG
data from saccades or neighboring fixations. There have been a
number of methods developed for identifying the start and end
of fixations in raw eye data streams using position, velocity,
and acceleration thresholding based on a priori knowledge of
the behavior of eye-gaze movements [14], [15]. The fixation
identification method used in this paper is based on the position
variance of the eye data, as described in [1].

Due to the natural motions of the eye, the fixation precision
in eye-gaze tracking systems may be low, which limits the range
of potential applications. However, as noted in [1], this low
precision can be improved by low-pass filtering the estimated
POG data to reduce noise at the expense of increased latency.
The desired degree of filtering within a fixation will depend
on the particular application under consideration. For high
precision, a higher-order filter may be used at the expense of
a longer latency or lag between the start of a fixation and the
desired filter response. Alternatively, a lower-order filter may
be used to allow the POG fixation to drift slightly over time to
follow the natural drift of the eye. Using digital finite-impulse-
response (FIR) filtering techniques allows the filter order to be
easily modified. Moreover, clearing the filter history (memory)
provides a simple means for resetting the filter when a fixation
termination is detected.

C. Eye-Gaze Tracking Systems

The development of noncontact eye-gaze tracking systems is
an important step in improving the acceptability of eye gaze
as a general form of human–machine interface. One of the
recent trends in eye-gaze tracking systems has been away from
systems requiring contact with the subject’s face and head, and
toward nonintrusive and nonrestrictive systems.

Contact-based methods such as electro-oculography (EOG),
scleral search coil, and head-mounted video-oculography are
seen as less desirable due to the requirement for contact with

the user’s head, face, or eyes. The EOG and search coil methods
do benefit however from the ability to electronically record the
subject’s eye gaze rather than optically as in the case of video-
based tracking. Electronic recording can be easily performed
at high data rates (thousands of hertz) using modern analog-
to-digital integrated circuits. The sampling rate of video-based
systems is limited to at most the frame rate of the imaging cam-
eras (typically 30 Hz) and is often even lower due to the image
processing techniques used and the high computational power
required to process large quantities of image data in real time.

In the late 1980s, Hutchinson et al. [16] developed a non-
contact video-based system that used the P-CR vector method
for computing the POG. The P-CR method greatly enhanced
the usability of remote eye-gaze tracking systems by providing
tolerance to minor head displacements. The system they devel-
oped was targeted to work with the severely disabled who had
no other easily available means of communication. Images were
recorded with a resolution of 512 × 480 pixels with a POG
sampling rate of 30 Hz. After calibration, the average accu-
racies for this method are typically 0.5◦ to 1◦ of visual angle.

Over the past two decades, the P-CR vector method has been
the favored means for noncontact video-based POG estimation.
However, the P-CR method still required a relatively stable head
position. The accuracy of the method considerably degrades as
the head is displaced from the calibration position [6].

To allow for free head motion, Shih and Liu [17] developed
a novel 3-D model-based method for estimating the eye gaze.
Using models of the system, camera, and eye, their algorithm
was designed to accurately estimate the POG regardless of head
location. Their system used two RS-170-based cameras and
frame grabbers to record images with a resolution of 640 ×
280 pixels at 30 Hz. The average accuracy was shown to
be better than 1◦ of visual angle. Unfortunately, their system
design required the cameras to be quite close to the subjects’
eyes to acquire high spatial resolution images, which restricts
the freedom of head motion due to the limited camera field
of view.

To overcome the limitation of a narrow field of view, Ohno
and Mukawa [18] developed a 3-D model-based system with
a camera mounted on a pan/tilt mechanism with a narrow-
angle (NA) lens and two fixed cameras with wide-angle (WA)
lenses. The fixed cameras used stereo imaging to determine the
location of the head within the scene and directed the pan/tilt
mechanism to orient the NA camera toward the eye. The WA
cameras recorded images with a resolution of 320 × 120 pixels,
while the NA camera recorded images with a resolution of
640 × 480 pixels, all at frame rates of 30 Hz. The system
accuracy was reported as better than 1.0◦ of visual angle. The
pan/tilt mechanism allowed the NA camera to track the motion
of the eye with a larger effective field of view; however, the
speed at which the mechanism could move was not sufficient
to keep up with the faster motion of the head and eye, which
results in loss of tracking and slow reacquisition.

Beymer and Flickner [19] used high-speed galvonometers
for their 3-D model-based system in an attempt to overcome
the limitations of the slow pan/tilt systems. A pair of fixed
WA cameras used stereo imaging to direct the orientation of
two NA cameras by controlling the pan and tilt of the rotating
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lightweight mirrors mounted on galvonometers. The focus of
each camera was controlled with a lens mounted on a bellows
and driven by another motor. The NA cameras recorded images
(with a typical resolution of 640 × 480 pixels) at a frame rate of
30 Hz. Due to the significant processing involved in the system,
a POG sampling rate of only 10 Hz was achieved. The accuracy
reported for this system was 0.6◦ of visual angle. While their
system was capable of tracking the eye in the presence of
natural high-speed head motion, considerable calibration was
required, and the overall complexity resulted in a low POG
sampling rate.

The 3-D model-based system by Hennessey et al. [20] was
developed to minimize the physical system complexity while
still allowing for fast head motion. The system was based on
a single fixed camera with a high-resolution sensor and no
moving parts. The higher resolution sensor allowed a larger
range of head motion with the eye remaining in the field of view
of the camera while still providing images with sufficient spatial
resolution for the eye-tracking system to correctly operate. The
system algorithms were designed to track the motion of the eye
within the image and only operate on the portion of the image
containing the eye. Processing only the portion of the image
containing the eye allowed the POG to be rapidly computed
regardless of the overall image resolution. At the time of system
development, a camera with a resolution of 1024 × 768 pixels
was available with a maximum frame rate of 15 Hz. Using this
system, accuracies better than 1◦ of visual angle were achieved.

Fixation precision has not often been reported in the eval-
uations of 3-D model-based eye-gaze tracking systems as the
focus tended to be on the basic system functionality and the
accuracy of the novel POG algorithms. However, Yoo and
Chung [21] did provide some insight into the fixation precision
of their free head motion eye-gaze tracking system. Using a
similar system design as Ohno and Mukawa [18], they reported
an accuracy of 0.98◦ in horizontal error and 0.82◦ in vertical
error when operating at 15 Hz. The precision in standard
deviations was reported in millimeters, which converted to
0.84◦ of visual angle. We believe that fixation precision is an
important parameter in the evaluation of the performance of
eye-gaze tracking systems, and the goal of this paper is to
present methods for enhancing the fixation precision.

III. METHODS

A. POG Estimation

There are currently two main types of methods for computing
the POG from remote video images, i.e., the P-CR vector
method and the 3-D model-based method.
1) P-CRMethod: The simplicity of the P-CR vector method

and its ability to handle minor head motions led to its wide-
spread adoption. As the eye rotates to observe different points,
the image of the reflection off the spherical corneal surface
remains relatively fixed. The corneal reflection, which is gen-
erated by external lighting, provides a reference point for
determining the relative motion of the pupil. A simple mapping
is used to relate the 2-D POG screen vector to the 2-D image
vector formed from the center of the corneal reflection to the
center of the pupil, as shown in Fig. 1.

Fig. 1. Example of a portion of a recorded bright pupil image shown to illus-
trate the P-CR vector. In the P-CR method, the vector (gx, gy) is determined
from the center of the corneal reflection to the center of the pupil. A mapping is
then defined to relate the P-CR vector to the POG screen coordinates (px, py).

Fig. 2. Three-dimensional model-based method for computing the POG based
on determining the location of the center of the cornea and the LOS vector.
Using (2), the POG can be found by tracing the LOS vector from C to the
surface of the screen P . The model of the eye is based on the schematic
description by Gullstrand, which in this case includes three parameters, i.e.,
the radius of the model of the corneal sphere r, the distance from the center
of corneal sphere to the center of pupil rd, and the index of refraction of the
aqueous humor fluid n.

Independent polynomial equations are determined to relate
the 2-D P-CR vector (gx, gy) to each of the 2-D POG screen
coordinates (px, py). The polynomial order varies between
different system designs but is most often of first order as

px = a0 + a1gx + a2gy + a4gxgy

py = b0 + b1gx + b2gy + b4gxgy. (1)

It has been shown that small increases in accuracy may be
achieved by increasing the order of the polynomial at the
expense of a decrease in robustness to head motion and the need
for an increasing number of calibration points [22].

The parameters ai and bi are determined from a calibration
procedure in which the user sequentially fixates on a number
of known screen locations while the P-CR vector is recorded.
In the case of a first-order polynomial fit, a minimum of four
calibration points are required to solve for the four unknowns
in each of the two equations in (1) typically using a least squares
method.
2) 3-D Model-Based Method: Algorithms based on 3-D

models have been developed to overcome the degradation
in accuracy that the P-CR method suffers with larger head
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Fig. 3. Illustration of the bright pupil and image differencing techniques. The bright pupil in (a) is illuminated with on-axis lighting, while the dark pupil in (b)
is illuminated with off-axis lighting. The background intensity of the two images is similar, which after differencing [(a) and (b)] results in a bright pupil on an
almost blank background as shown in (c). (a) Bright pupil image. (b) Dark pupil image. (c) Difference image.

movements. The 3-D model-based methods compute the po-
sition of the eye in 3-D space, which is then used in computing
the POG regardless of the head and eye position. There are
a large variety of 3-D model-based algorithms, although each
technique is typically based on a model of the physical system,
camera, and eye. The physical system is geometrically modeled
through physical measurement or using optical methods as
in [17]. The camera lens is modeled as a pinhole with the
parameters identified through camera calibration [23], [24]. The
models of the eye are most often based, in varying levels of
sophistication, on the schematic eye developed by Gullstrand
[25]. An example of a typical eye model with three parameters
is shown in Fig. 2. A per-user calibration is required to fit the
eye model parameters to individual users.

Feature information is extracted from recorded images and
fitted to the system models to solve for the location of the eye
in 3-D space, the line of sight (LOS), and ultimately the POG,
as shown in Fig. 2. The location of the eye in 3-D space is found
by determining the center of the cornea C, when modeled as a
spherical surface, using triangulation with images of multiple
corneal reflections. With the 3-D location of the cornea center
and the image location of the center of the pupil, the 3-D LOS
vector can be computed. The LOS can be traced from C to
intersect with any surface point P in the system by determining
the parameter t in (2). The object of intersection is typically the
surface of the computer screen that is parameterized as a plane
in the system model

P = C + t · LOS. (2)

B. Image Processing

Both the P-CR vector and the 3-D model-based methods
for estimating the POG require features extracted from the
recorded images. The P-CR method requires the location of
the pupil and the location of a single corneal reflection, while
the 3-D method requires the pupil and at least two corneal
reflections for triangulation. The locations of the pupil and
corneal reflections are found by identifying the perimeter of

their respective image contours. The pupil contour perimeter
can be considerably difficult to segment due to the low contrast
between the pupil and the surrounding iris. The corneal reflec-
tions can be difficult to segment due to their small size, which
is often less than 3 × 3 pixels. Varying levels of ambient light
can compound the feature extraction difficulty.

To improve the performance of the feature extraction task,
the bright pupil and the image differencing techniques are
used to create a high-contrast image of the pupil [26], [27].
Computing a difference image from alternating bright and
dark pupil images removes most of the background features,
which ideally leaves only the high-contrast pupil on a black
background. An example of the bright pupil and the image
differencing techniques are shown in Fig. 3. Using a sin-
gle on-axis light source generates a single corneal reflec-
tion that is used in the P-CR POG estimation method. By
using two off-axis light sources for the dark pupil image,
the two corneal reflections required for the 3-D method are
generated.

While the image differencing technique aids in the identifica-
tion of the pupil contour within the image, it is also susceptible
to significant artifacts that may corrupt the identified contour.
When the difference image is computed, the corneal reflections
formed by the off-axis lighting in the dark pupil image can
result in removing a portion of the pupil as seen in the lower
left side of Fig. 3(c). Moreover, the addition to the pupil contour
of the corneal reflection from the on-axis lighting is also seen.
The difference image is also susceptible to significant artifacts
due to interframe motion. The interframe motion may distort
the extracted pupil contour by misaligning the bright and dark
pupil images, which will significantly impact the accuracy of
the POG estimation algorithms.

To avoid the inaccuracies resulting from interframe motion
and image differencing, a two-stage approach to pupil detection
was used. The first stage of pupil extraction determines the im-
age difference pupil as described above. The corneal reflections
are then identified in both the bright and dark pupil images
based on their proximity to the roughly identified difference
pupil [see Fig. 4(a)]. In the second stage of pupil identification,
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Fig. 4. Example of the results of the two-stage pupil detection algorithm. In (a), the detected perimeter of the identified image difference pupil contour is shown
overlying the difference image. Using the difference pupil contour as a guide, the pupil perimeter is detected in the bright pupil image as shown in (b). The gap in
the pupil perimeter is a result of masking off the on-axis corneal reflection, which is subsequently compensated for by fitting an ellipse to the bright pupil contour
perimeter. (a) Difference pupil contour. (b) Bright pupil contour.

Fig. 5. ROIs are used to reduce the quantity of image information to process as well as to increase the camera frame rate. In (a), only the software ROI is applied
to the original full-sized bright pupil image (640 × 480 pixels). Only the portion of the image within the rectangular box (110 × 110 pixels) surrounding the eye
will be processed. In (b), the hardware ROI (640 × 120 pixels) has been applied in addition of the software ROI. (a) Full image and software ROI. (b) Hardware
and software ROIs.

the pupil contour is segmented in only the bright pupil image
using the previously detected difference pupil as a guide. Using
only the bright pupil image avoids errors due to interframe
motion and the accidental removal of the pupil area by the
subtraction of the dark pupil–corneal reflections. The final
step of the second stage is to mask off the portion of the pupil
contour that may be due to the addition of the on-axis corneal
reflection [see Fig. 4(b)]. The resulting pupil perimeter retains
its elliptical shape when compared with the initial roughly
identified pupil perimeter. For a more detailed description of
the methods used for pupil and corneal reflection segmentation,
see [28].

Before transferring the identified pupil and glint locations to
the POG estimation algorithms, the identified contour perime-
ters are further refined using an ellipse fitting algorithm, which
is both fast (computationally efficient) and robust to noise
[29]. The subpixel accuracy in the identification of the contour
centers may be achieved by using the center of the equation
of an ellipse fitted to the contour perimeters [30]. In addition,
using an ellipse fitted to the available pupil perimeter points
compensates for the loss of data when a gap appears as a result

of the masking operation to remove the corneal reflection from
the on-axis lighting.

C. POG Sampling Rate

The POG sampling rate in video-based eye-gaze tracking
systems is at most equal to the frame rate of the camera,
although it is often less due to image processing requirements
and techniques such as image differencing. In order to achieve
high-speed eye-gaze tracking, the POG sampling rate must be
maximized.
1) Software ROI: Image processing algorithms can be con-

siderably time consuming due to the large quantity of informa-
tion to process. To greatly reduce the processing load for our
system, a software-based region of interest (ROI) was employed
to constrain the processing to only the image area of interest.
In the design of our system, rather than using mechanical
tracking, the camera field of view encompasses a large area that
allows the eye to move around within the scene. Accordingly,
only a small portion of the overall scene contains the informa-
tion of interest, as shown in Fig. 5(a).
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The location of the ROI is continuously updated to track the
location of the eye, which allows for head motion within the
field of view of the camera. Initially, the first captured images
are processed in their entirety to identify the location of the
pupil within the overall scene. The ROI is then centered on
the eye as each frame is processed and the center of the pupil
identified. In this fashion, only a small portion of the image will
normally be processed. In the event that the pupil is lost due to
blinking or rapid head or eye motion, which relocates the eye
outside of the ROI between image frames, the entire image is
reprocessed until the pupil location is reidentified or, in the case
of a blink, the eye reopens.
2) Hardware ROI: The basis of data reduction using a soft-

ware ROI may also be applied to the reduction of data transmit
from the camera to the computer. Reducing the transmission
of information per frame allows for an increase in the overall
frame rate and consequently the maximum achievable POG
sampling rate. The Firewire2 (IEEE-1394b) Digital Camera
(DCAM) specification for data transmission defines the oper-
ation of hardware-based ROIs (using Format 7), although some
variation in behavior may be found between different camera
manufacturers. Using commands in the Firewire2 protocol, the
camera can be configured to apply a hardware ROI to an image
before the imaging sensor is exposed and read.

The frame rate for the camera used by our system (described
in Section III-D) only increased by skipping image rows, and
no frame rate improvement was achieved for skipping image
columns. Using the software ROI in conjunction with the hard-
ware ROI allowed the flexibility to maximize the frame rate
while minimizing the required processing. Similar to the soft-
ware ROI, the location of the hardware ROI was recentered
on the pupil image frame to track the motion of the eye. Un-
fortunately, changing the location of the hardware ROI in real
time aborted the exposure of the current image, which results in
an underexposed image for one frame. To minimize the number
of hardware ROI location changes, the size of the hardware
ROI was chosen to be the full width of the original image and
slightly larger than the height of the cornea, while the size of
the software ROI was set to the width of the cornea and slightly
smaller than the height of the hardware ROI, as shown in
Fig. 5(b). The software ROI then tracks all horizontal motion
and most small vertical motions without requiring a change
in the hardware ROI location. The hardware ROI is then only
repositioned for larger vertical displacements in the position of
the eye.
3) Image Sequencing: Recording alternating bright and

dark pupil images for the image differencing technique aids in
the detection of the pupil within the overall scene; however,
it also reduces the effective POG sampling rate. When a 1 : 1
ratio of alternating bright and dark pupil images is recorded, the
P-CR method can only generate a unique POG (Pi) at half the
camera frame rate, as shown in Table I, since all the information
required to compute the POG is contained within the bright
pupil image. Recall that for the P-CR POG estimation method,
the image features required are the pupil and a single corneal
reflection, which are both found in the bright pupil image. The
3-D method uses the image information from both the bright
and dark pupil images, and as such can compute a unique

TABLE I
POG SAMPLING SEQUENCES FOR HS P-CR AND 3-D POG ESTIMATION

METHODS WITH 1 : 1 AND 3 : 1 BRIGHT TO DARK PUPIL RATIOS

POG (Pi) at the camera frame rate by using features from
each current image (fi+1) along with the image previously
recorded (fi).

In the HS P-CR method reported here, the system operation
was enhanced by increasing the sampling rate of unique POG
estimates through increasing the ratio of bright pupil images
with respect to dark pupil images. As the HS P-CR method only
requires the dark pupil image to roughly identify the location
of the pupil in the scene, the ratio of bright to dark pupil
images may be increased until interframe motion results in loss
of tracking due to misaligned image differencing. To illustrate
the improvement in POG sampling rate, an example of a 3 : 1
bright to dark pupil ratio is also shown in Table I, in which
the sampling rate has increased from 50% of the camera frame
rate to 75%.

Increasing the rate of unique POG estimates for the HS P-CR
method by increasing the ratio of bright to dark pupil images
is preferable to maintaining a 1 : 1 ratio and using a corneal
reflection from the dark pupil image as is done in the 3-D
method. In the HS P-CR method, using image information for
POG estimation from only a single bright pupil image (see
Table I) avoids the errors in POG estimation that may result
from misaligned bright and dark pupil image features due to
interframe motion.

Unfortunately, a similar technique cannot be used for the
3-D method to avoid the interframe motion while increasing the
POG update rate. The 3-D method would require two additional
corneal reflections in the bright pupil image to compute the
POG with the information contained solely in a single image.
The extra reflections would have to be masked off of the
pupil contour, as described in Section III-B, which potentially
removes large portions of the pupil contour and consequently
decreases the accuracy of the pupil feature identification. The
corneal reflection from the on-axis lighting in the bright pupil
image cannot be used with the 3-D method as the on-axis light
source is located coaxially with the focal point of the camera,
which results in a singularity in the 3-D model algorithm,
see [20, eq. (4)].

D. Hardware

The Dragonfly Express from Point Grey Research was the
digital camera used for the system described in this paper. The
camera is capable of recording full-sized images of 640 ×
480 pixels at frame rates of up to 200 Hz. To further increase
the frame rate, a hardware ROI was used to reduce the size of
the recorded images.
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Fig. 6. Physical system showing the camera located beneath the monitor, the
on-axis lighting (ring of light-emitting diodes surrounding the lens), the two
off-axis point light sources located to the right of the monitor, and the monitor
upon which the POG is estimated.

The camera uses the Firewire2 (IEEE-1394b) standard to
transmit images from the camera to the computer. An electronic
strobe signal generated by the camera at the start of each
image frame was monitored by a custom microcontroller to
synchronize the on-axis and off-axis lighting with the image
exposure. The microcontroller also controlled the ratio of bright
to dark pupil images as directed by the computer through the
serial port.

The system evaluation was performed on a Pentium IV
3-GHz processor with 2 GB of random access memory. A flat-
screen liquid-crystal display monitor with a width of 35.8 cm
and a height of 29.0 cm was set to a resolution of 1280 ×
1024 pixels and located at a distance of approximately 75 cm
from the users’ eye. The physical system is shown in Fig. 6.

IV. EXPERIMENTAL DESIGN AND RESULTS

The techniques to perform the high-speed noncontact eye-
gaze tracking described above were evaluated with the HS
P-CR and 3-D model-based methods for estimating the POG.
Both POG methods were tested at three different camera frame
rates to determine the effect of sampling rate on fixation pre-
cision. Varying levels of digital filtering were applied to the
recorded data for each POG method at each frame rate to show
the resulting improvements in precision.

The sequences of POG estimates were collected on a total
of four different subjects while performing a simple task with a
data set recorded for each combination of the two POG methods
and three camera frame rates, which results in a total of six data
sets per subject and 24 data sets overall. The camera frame rates
tested were 30, 200, and 407 fps, which allow for comparison
between the equivalent of 30-fps systems, 200 fps achievable
when recording full-sized images without a hardware ROI
(640 × 480 pixels), and 407 fps achievable with the hardware
ROI enabled (640 × 120 pixels).

Fig. 7. Example of the fixation task in which the user observed each of
the nine points on a 3 × 3 grid. In this example, the POG samples were
recorded with the HS P-CR vector method and a camera frame rate of 407 Hz.
The original POG data are shown along with the results of filtering with a
500-ms moving window average. The POG screen coordinates have been
converted from units of pixels to centimeters in this figure.

The experimental procedure was comprised of a calibration
phase, a familiarization phase, and the performance of a simple
task during which the POG screen coordinates were recorded.
The calibration consisted of having the subject observe the four
corners of the screen for approximately 1 s each while the
per-user parameters were estimated. After calibration, a short
familiarization period was allowed in which the calibration was
evaluated with the subject verifying that the computed POG
across the screen was in fact the same (or at least very close)
to their real POG. The subject was then asked to fixate on nine
sequential points on a 3 × 3 grid, which were displayed across
the screen. Throughout the fixation task, the screen coordinates
of the POG were continuously recorded along with a flag
indicating the fixation status at each grid point. The fixation
status flag was set to indicate the beginning of a fixation when
the relative stability of a fixation was detected, and the flag was
cleared when the larger motion of a saccade was detected, as
per the position variance algorithm described in [1]. At least 2 s
of fixation data were acquired before moving to the next point.
An example of the fixation data collected on the 3 × 3 grid for
a single subject is shown in Fig. 7, while a subset of ten POG
estimates from a single fixation point is shown in Fig. 8.

As previously discussed, the POG sampling rate for the HS
P-CR POG estimation method was enhanced by increasing the
ratio of bright to dark pupil images for the 200- and 407-fps
camera frame rates. At 30 fps, the ratio had to remain at 1 : 1
bright to dark pupil images as higher ratios resulted in frequent
loss of tracking due to interframe motion and misaligned image
difference pupil contours. At higher camera frame rates, higher
ratios were possible while still maintaining tracking as the
magnitude of the motion between each image frame was less.
Since loss of tracking rarely occurred at the 1 : 1 ratio and 30 fps
rate, a similar period between the dark pupil images was used
for the higher camera frame rates. The achieved HS P-CR up-
date rates for each camera frame rate along with the correspond-
ing bright to dark pupil image ratios are listed in Table II.
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Fig. 8. Labeled sequence of ten unfiltered POG estimates for the 3-D POG es-
timation method shown from a single fixation marker. The sampling sequences
at two camera frame rates are illustrated: (a) 30 Hz, in which the ten-point
sequence corresponds to a time interval of 333 ms and (b) 407 Hz, which
corresponds to a time interval of 25 ms. (a) The 3-D POG estimation method at
30 Hz. (b) The 3-D POG estimation method at 407 Hz.

TABLE II
IMAGE SEQUENCE PARAMETERS FOR THE HS P-CR POG METHOD

TABLE III
FILTER ORDER FOR EACH SAMPLING RATE AND FILTER LENGTH

FOR THE HS P-CR AND 3-D POG ESTIMATION METHODS

Low-pass filtering of the recorded sequence of POG screen
coordinates was performed offline for each subject and each
system configuration. Filtering the POG data offline allowed for
the comparison of the various levels of filtering on a consistent
set of data. The recorded X and Y POG coordinates were
filtered with a rectangular window FIR filter (moving average)
with filter lengths corresponding to latencies (window lengths)
of 30, 100, and 500 ms. The filter order for each system
configuration was determined from the POG sampling rate and
the desired latency, as listed in Table III. The three filter lengths
were chosen to contrast the difference in fixation precision with
latencies up to the duration of a typical fixation.

After filtering the recorded X and Y POG coordinates with
each of the FIR filters, the fixation precision was determined
at each of the nine fixation points. The standard deviation was
computed on the last 500 ms of the 2 s of data recorded at each

TABLE IV
FIXATION PRECISION FOR EACH SYSTEM CONFIGURATION

fixation point to avoid combining data points from adjacent
fixations when high filter orders are used.

The reported fixation precision for each system configuration
is the average of the nine standard deviations for each of the
four subjects and is reported in degrees of visual angle, as
shown in Table IV. To convert from units of screen pixels to
degrees of visual angle, the estimated POG and fixation marker
reference point are first converted from pixels to centimeters
with the scaling factors of 35.8 cm/1280 pixels for the X
coordinate and 29 cm/1024 pixels for the Y coordinate. The
POG error is then computed as the difference between the
estimated POG (px, py) and the fixation marker reference point
(rx, ry). It is assumed that in the worst case, the eye is located
along a vector normal to the screen that extends from the
midpoint of the POG error vector. The equation to convert from
pixels to degrees of visual angle (θ) is

θ = 2 · tan−1

(√
(px − rx)2 + (py − ry)2

2
· 1
75

)
(3)

with the assumption that the average distance from eye to screen
was 75 cm.

V. DISCUSSION

Using the techniques described above, the operation of the
remote eye-gaze tracking system at high sampling rates was
achieved. The higher sampling rates more accurately record the
faster dynamics of the eye and reduce the signal aliasing. Using
the Nyquist criterion, the sampling rate should be at least twice
the highest frequency of the microsaccades and tremors (up to
150 Hz [12]) observed during fixations. To illustrate the effect
of aliasing, a labeled sequence of POG estimates is shown with
a low sampling rate (30 Hz) in Fig. 8(a) and at a much higher
sampling rate (407 Hz) in Fig. 8(b). For the lower sampling rate,
the details of the trajectory of the POG are missing as illustrated
by the erratic and large displacements between the subsequent
POG estimates. At the higher sampling rate, the trajectory of
the POG estimates can more clearly be seen as the displacement
between estimates is smaller.

Processing the incoming images at 200 fps was achieved
with only the use of the software ROI. With the addition of the
hardware ROI, the camera frame rate increased to 407 fps. Us-
ing the 3-D model-based POG estimation algorithm, the POG
estimation rate was equal to the camera frame rate: 30 Hz at
30 fps, 200 Hz at 200 fps, and 407 Hz at 407 fps. When using
the HS P-CR method for estimating the POG, an update rate
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Fig. 9. Fixation precision versus filter length is shown averaged across all four
subjects indicating an exponential relationship. The POG screen coordinates
were recorded with the system operating at 407 fps for both the HS P-CR and
the 3-D POG methods.

of only 15 Hz was achieved when operating at 30 fps due to
the requirements of the image differencing technique. With the
reduced interframe motion at higher frame rates, it was possible
to enhance the P-CR method by increasing the ratio of bright to
dark pupil images without losing lock on the eye. Increasing
the bright to dark pupil ratio to 9 : 1 for the 200 fps frame rate
increased the POG sampling rate to 180 Hz, and increasing
the ratio to 19 : 1 at 407 fps increased the sampling rate to
386 Hz. The POG update rates achieved for the HS P-CR and
3-D methods are a significant increase over the rates achieved
by similar eye-gaze tracking systems discussed in the back-
ground review of this paper.

The fixation precision reported for the 3-D model-based POG
method at the lowest sampling rate (30 Hz) was 0.55◦. This
result is of similar magnitude to the precision reported by Yoo
and Chung [21] at 0.84◦ for their noncontact free-head eye-
gaze tracking system, which operated at a rate of 15 Hz. The
benefit of our system is the ability to increase the POG sampling
rate, which then allows digital filtering to further improve the
fixation precision while still maintaining an acceptable latency.
Using digital low-pass filtering resulted in an improvement in
fixation precision in all the system configurations, as shown
in Table IV. In the experiments performed, the best fixation
precision was achieved with the longest filter (500 ms), which
for the HS P-CR method resulted in a standard deviation of
0.035◦ or 1.6 screen pixels and 0.050◦ or 2.3 screen pixels
for the 3-D model-based method. The relationship between
filter length and fixation precision appears to be exponential as
shown in Fig. 9. As the filter length increases, a diminishing
return in the tradeoff between the achieved precision and the
POG latency is achieved.

The fixation precision of the HS P-CR method was compared
with the 3-D model-based method at each of the camera frame
rates using three one-way analyses of variance. It was found

that the HS P-CR method was statistically more precise than
the 3-D method at 30 fps (F (1, 70) = 87.168, p < 0.001),
200 fps (F (1, 70) = 17.939, p < 0.001), and 407 fps
(F (1, 70) = 38.273, p < 0.001). This result is possibly due to
the motion of the eye between the image frames used to com-
pute the POG in the 3-D method. It is possible that the natural
eye motions between image frames result in misaligned bright
and dark pupil image features, which increase the variability
of the estimated POG and consequently decrease the fixation
precision. Supporting this theory is the improvement in fixation
precision for the 3-D method when the camera frame rate
increases, which decreases the time between image frames
and consequently reduces the degree of potential interframe
motion.

A comparison of the accuracy between the two methods was
not performed as the focus of this paper is on fixation precision.
A more detailed investigation of system accuracy is presented
in [20]. While not the focus of this paper, the system accuracy
was confirmed to be comparable to many contemporary remote
eye-gaze tracking systems [6]. Averaged over all subjects and
all operating conditions, the HS P-CR method resulted in an
accuracy of 0.72◦, while the 3-D method accuracy was 1.0◦

of visual angle. The accuracy of the HS P-CR method appears
slightly better in these experiments; however, the measurements
were only recorded with the head located near the calibration
position and did not explicitly exercise the free head capabilities
of the 3-D model-based method.

VI. CONCLUSIONS

The precision of eye-gaze tracking systems within fixations
is a key factor in determining the usability of eye-gaze tracking
for human–computer interaction. In this paper, the start and
end of fixations have been detected using position variance
thresholding. The precision of a fixation was then computed as
the standard deviation of the POG estimates temporally located
between the beginning and end of the fixation.

Techniques that enable video-based noncontact eye-gaze
tracking systems to operate at high POG sampling rates were
presented, which more adequately record the dynamics of
high-speed eye movements. A high-speed method for P-CR
POG estimation was also presented in which the sampling rate
was increased by modifying the ratio of bright pupil to dark
pupil images. Increasing the frequency of bright pupil images
increased the frequency of the images containing the features
required to compute the POG.

The high-speed techniques were evaluated on both the HS
P-CR and the 3-D model-based POG methods. Within the
fixations defined by position variance thresholding, the fixation
precision has been shown to improve through the application
of low-pass digital filters. Higher POG sampling rates allowed
for a tradeoff between fixation precision and real-time POG
latency, depending on the intended user application. An expo-
nential relationship was observed between the filter order and
the fixation precision, which indicates a diminishing incremen-
tal improvement with increasing filter orders.

A comparison between the HS P-CR POG estimation method
and the 3-D model-based method showed that the fixation



298 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008

precision for the HS P-CR method was significantly better than
the 3-D method at each of three camera frame rates tested.
One possible explanation for this result is that the HS P-CR
POG estimation method avoided the misalignment of the image
feature data resulting from interframe motion by using informa-
tion from only a single image to compute the POG. Although
the 3-D method is shown to be less precise, it does allow a wider
range of head motion [20] than the HS P-CR method [6]. In this
paper, however, subjects were asked to maintain a comfortable
relatively stationary head position.

Future work will focus on the evaluation of the techniques
presented in this paper on a larger sample of subjects. The
integration of these methods with an eye-gaze tracking system
for use outside the laboratory environment is also desirable to
increase the realism of the eye-gaze tracking experiments.
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