
An Open Source Eye-gaze Interface: Expanding the Adoption of Eye-gaze in
Everyday Applications

Craig Hennessey∗

Mirametrix Research
Andrew T. Duchowski†

School of Computing, Clemson University

Abstract
There is no standard software interface in the eye-tracking industry,
making it difficult for developers to integrate eye-gaze into their
applications. The combination of high cost eye-trackers and lack
of applications has resulted in a slow adoption of the technology.
To expand the adoption of eye-gaze in everyday applications, we
present an eye-gaze specific application programming interface that
is platform and language neutral, based on open standards, easily
used and extended and free of cost.

1 Introduction & Background
1

The use of eye-gaze as an interface is still rarely observed
outside of research laboratories [Duchowski 2003]. While re-
cent low-cost [Babcock and Pelz 2004; Li et al. 2006] and open
source [San Agustin et al. 2009] initiatives have been proposed,
high equipment cost and a lack of applications are holding back
widespread adoption of eye-gaze in everyday applications. With no
clear standard established, developers wanting to integrate eye-gaze
into their applications must choose between two interface mecha-
nisms, simple cursor following or a vendor specific application pro-
gramming interface (API).

1.1 Cursor tracking

The simplest way to add eye-gaze to an application is to link the
mouse cursor position to the eye-tracker point-of-gaze (POG), and
then track the cursor’s position. A number of applications, such
as Dasher [Ward and MacKay 2002] and Stargazer [Hansen et al.
2008], currently use this technique. Its advantages are simplicity,
availability, and no additional costs.

However, this approach lacks the additional functionality related
to the POG such as a POG validity flag, binocular data (left and
right eye POG), eye position information, fixation/saccade tracking
and more. Furthermore, once the mouse cursor is tied to the POG,
the mouse is no longer available for traditional input.

1.2 Vendor API

Until now, to achieve full eye-gaze application functionality, a ven-
dor specific API was required. A full API usually provides com-
plete eye-gaze information, including the left and right eye POG,
head position, and data validity flags. In addition, vendors may

∗craig@mirametrix.com
†duchowski@clemson.edu

1 c©ACM, (2010). This is the authors version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in ETRA2010, VOL.TBA, ISS.TBA,
(2010) http://doi.acm.org/10.1145/TBD.TBD

provide the ability to customize the internal algorithms, such as the
filtering and fixation detection methods.

One disadvantage of using a vendor supplied API is that propri-
etary libraries (lib or dll) must be included, which are typically
compiled for a specific operating system and a specific program-
ming language. These libraries are included as part of a software
development kit (SDK) which must be purchased from the vendor.
As every vendor has a different SDK, a software developer must
acquire an SDK for each eye-tracker they wish to support.

Consequently, it is possible to develop a translator application
that acts as an intermediary between the vendor’s API and an ap-
plication, as exemplified by the development of the Eye-Tracking
Universal Driver (ETU-Driver),2 one of COGAIN’s Work Package
2 (WP2) deliverables [Bates et al. 2005; Bates and Špakov 2006].
Although this effort also suggested an XML-based universal API,
the resultant ETU-Driver was wrapped into a COM object, limiting
its portability across operating systems.

1.3 Open Eye-gaze API

In this paper we propose an open eye-gaze API that combines the
best of the techniques described above. A summary of the pro-
posed eye-gaze interface is shown in comparison with the tradi-
tional methods in Table 1.

The open eye-gaze API proposed here is based on the web-
services API model. This model uses TCP/IP as the communication
mechanism and the extensible mark-up language (XML) as the data
format. Both TCP/IP and XML are open standards that are readily
available on most operating systems and programming languages.
Data and commands are encoded in plain text XML and transmit
as simple strings over the TCP/IP communication layer, providing
maximum transparency. The open eye-gaze API will be described
in detail in the following section.

Table 1: Comparison of eye-gaze interface techniques.

Feature Cursor Vendor
API

Open eye-
gaze API

Platform neutral Yes No Yes
Language neutral Yes No Yes
Open standards Yes No Yes
Proprietary data format N/A Yes No
Cost None High* None
Baseline feature set X/Y Full Full
Extendable No No* Yes
* Vendor dependent

2 Implementation
The open eye-gaze API uses a client-server architecture. The client
application configures selected variables on the server such as the
fixation POG or left and right eye positions, and initiates the data
transmission sequence. The client then listens for data records sent

2http://www.cs.uta.fi/˜oleg/etud.html

http://www.cs.uta.fi/~oleg/etud.html

Table 2: Configuration variables for the open eye-gaze API.

Data ID Read/Write Parameters Type Description
ENABLE SEND DATA R/W STATE boolean Start or stop data streaming
ENABLE SEND COUNTER R/W STATE boolean Enable record ID counter data
ENABLE SEND TIME R/W STATE boolean Enable time stamp data
ENABLE SEND TIME TICK R/W STATE boolean Enable high resolution timer tick
TIME TICK FREQUENCY R FREQ long long Tick frequency (signed 64-bit integer)
ENABLE SEND POG LEFT R/W STATE boolean Enable left eye point-of-gaze data
ENABLE SEND POG RIGHT R/W STATE boolean Enable right eye point-of-gaze data
ENABLE SEND POG FIX R/W STATE boolean Enable fixation point-of-gaze data
ENABLE SEND PUPIL LEFT R/W STATE boolean Enable left eye image data
ENABLE SEND PUPIL RIGHT R/W STATE boolean Enable right eye image data
SCREEN SIZE R WIDTH int Screen width (pixels)
SCREEN SIZE R HEIGHT int Screen height (pixels)
CAMERA SIZE R WIDTH int Camera image width (pixels)
CAMERA SIZE R HEIGHT int Camera image height (pixels)
PRODUCT ID R VALUE string Product identifier
SERIAL ID R VALUE string Device serial number
COMPANY ID R VALUE string Manufacturer identifier
API ID R MFG ID string API vendor identity
API ID R VER ID string API version number
API SELECT R MFG ID? string List of vendors supported
API SELECT R VER ID? string List of versions supported
API SELECT W STATE int Selected API

by the server each time a new POG is computed. Commands and
records are formatted in XML strings which are transmitted over
a TCP/IP connection, allowing communication between multiple
computers. Using TCP rather than UDP ensures records are not
lost and are received in the correct order.

2.1 XML Format
Data and commands are formatted using XML string fragments
called elements. Each element is defined by an empty-element TAG
that specifies the element type. An empty-element TAG is of the
form <GET ... />, which is shorter than the start/end element for-
mat <GET>...</GET>. Only six XML tags are required for the
open eye-gaze API and are listed in Table 3.

Table 3: XML TAG identifiers in the open eye-gaze API

Client
TAG Description
GET Get a data variable or command
SET Set a data variable or command
Server
TAG Description
ACK Acknowledge a successful command
NACK Acknowledge a failed command
CAL Calibration result record
REC Data result record

Any additional parameters in a data record or command are de-
fined by attributes taking the form of name/value pairs, e.g.:

<GET ID="ENABLE_SEND_TIME" />

where the attribute is ID and the value is ENABLE SEND TIME.
As XML elements are read by the client and server it is possible

that a partial element will be read if the reader is faster than the
sender, or multiple elements may be read if the reader is slower. A
partial and multiple record are shown below:

<GET ID="ENABLE_SE
<GET ID="COMPANY_ID" /><GET ID="API_ID" />

There is no identifier available to signal end of transmission for
an open TCP connection and therefore to delimit records, a carriage
return (CR), line feed (LF) pair (\r\n) is introduced, indicating the
end of the string. The CRLF sequence is safe to use as the record
delimiter as the XML specification disallows CRLF from appearing
within the XML string.

2.2 Client / Server
The eye-tracker operates as the server and the application operates
as the client. A TCP stream is opened between the client application
and the eye-gaze server using the IP address of the server and an as-
signed port number (4242 is the default port value). Applications
may be run on completely remote computers and connect to the eye-
tracking server by using the appropriate remote server IP address.
Multiple eye-trackers may also be run on the same machine by as-
signing different port numbers to the different servers (for example
4242 for tracker 1 and 4243 for tracker 2). A client application may
then connect to multiple eye-trackers by simply opening two ports
for communication (4242 and 4243 in this example).

The server can operate in three different modes: configuration,
calibration and data transmission.

Configuration. In configuration mode the server responds to
each XML element query (GET or SET TAG) with the appropriate
XML (ACK or NACK TAG). This mode is used to select the variables
in the requested data stream, query other eye-tracker variables and
to initiate or end calibration and data transmission. An example of a
configuration event where the COUNTER variable is enabled in the
data stream would appear as follows:

CLIENT SEND: <SET ID="ENABLE_SEND_COUNTER" STATE="1" />
SERVER SEND: <ACK ID="ENABLE_SEND_COUNTER" STATE="1" />

The full list of configuration variables in the eye-gaze API are
listed in Table 2. Camera and screen sizes are returned in pixel
units. The POG X and Y eye position coordinates are normalized
to the screen and camera image sizes respectively. For monocular

eye-trackers, the LEFT eye data structure should be used and the
RIGHT eye data structure left cleared (zeroed).

Calibration. To reduce the complexity for application develop-
ers, the calibration of the eye-tracker is performed by the server but
can be initiated by the client using the commands listed in Table 4.
The calibration process includes the display of calibration markers,
the actual calibration procedure, and the display of the results.

During calibration the server transmits calibration XML ele-
ments (CAL TAG and ID attribute value CALIB RESULT PT) after
each calibration point is completed as shown in Table 5. The PT at-
tribute indicates which calibration point was completed. After the
entire calibration procedure is complete, the results of the calibra-
tion are returned with the CALIB RESULT attribute, also shown in
Table 5. The CALX?/CALY?, LX?/LY? and RX?/RY? results are
returned in percentages of the screen (0-100%) and can be used to
provide feedback on how well the calibration performed for the eye
at the indicated point. The LV? and RV? flags provide an indicator
of whether the calibration was successful at all.

Table 4: Commands for calibration display and control.

Data ID Read/ Param Type Description
Write

CALIBRATE START R/W STATE Bool Start or stop the
calibration pro-
cedure

CALIBRATE SHOW R/W STATE Bool Show or hide
the default cali-
bration window

Table 5: Calibration data and results.

Data ID Param Type Description
CALIB RESULT PT PT int Calibration point

completed
CALIB RESULT CALX?

CALY?
float Calibration X/Y co-

ordinate for point ?
CALIB RESULT LX?

LY?
float Left eye POG X/Y

for point ?
CALIB RESULT LV? int Left eye valid flag

for point ?
CALIB RESULT RX?

RY?
float Right eye POG X/Y

for point ?
CALIB RESULT RV? int Right eye valid flag

for point ?
? = the calibration point number

To illustrate the operation of the open eye-gaze API calibration
procedure the following listing shows an entire calibration sequence
on a 4 point calibration grid.

CLIENT SEND: <SET ID="CALIBRATE_SHOW" STATE="1" />
SERVER SEND: <ACK ID="CALIBRATE_SHOW" STATE="1" />
CLIENT SEND: <SET ID="CALIBRATE_START" STATE="1" />
SERVER SEND: <ACK ID="CALIBRATE_START" STATE="1" />
SERVER SEND: <CAL ID="CALIB_RESULT_PT" PT="1" />
SERVER SEND: <CAL ID="CALIB_RESULT_PT" PT="2" />
SERVER SEND: <CAL ID="CALIB_RESULT_PT" PT="3" />
SERVER SEND: <CAL ID="CALIB_RESULT_PT" PT="4" />
SERVER SEND: <CAL ID="CALIB_RESULT"
CALX1="0.10000" CALY1="0.08000"
LX1="0.00000" LY1="0.00000" LV1="0"
RX1="0.09881" RY1="0.09238" RV1="1"
CALX2="0.90000" CALY2="0.08000"
LX2="0.90595" LY2="0.08952" LV2="1"
RX2="0.88869" RY2="0.09905" RV2="1"
CALX3="0.10000" CALY3="0.92000"
LX3="0.08631" LY3="0.89143" LV3="1"
RX3="0.09881" RY3="0.92952" RV3="1"
CALX4="0.90000" CALY4="0.92000"

LX4="0.89524" LY4="0.90095" LV4="1"
RX4="0.89583" RY4="0.92190" RV4="1" />

Data Transmission. When in free running data transmission
mode, the server transmits an XML record (REC TAG) after each
new POG computation. The XML record contains attributes that
match the configured data requested in the configuration mode. At-
tributes selected with commands in Table 2 are listed in Table 6.

Synchronizing recorded eye-gaze with external data such as soft-
ware events and biological data such as EMG and EEG can be
performed using the TIME TICK variable, which is a measure of
elapsed CPU timer ticks and is equal to the output of a high resolu-
tion timing function. Conversion from ticks to seconds is achieved
by dividing by the TIME TICK FREQUENCY value from Table 2.

Unfiltered POG estimates are available by reading the left and
right eye POG data (LPOG? and RPOG? respectively). This data
can then be processed using any desired algorithm for filtering and
extracting fixations. To avoid the need for the application devel-
oper to implement their own fixation detector, a fixation data record
is also available (FPOG?). The fixation data record is generated
by whichever fixation algorithm (e.g., position-variance, velocity-
based, etc.) is implemented by the eye-tracker, and provides the
X/Y fixation position on the screen, the start time and duration in
seconds, a valid flag, and an identifier indicating the fixation’s ID.

Table 6: Data attributes available in the data record.

Param Type Description
CNT int Sequence counter for data packets
TIME float Elapsed time in seconds since last

system initialization or calibration
TIME TICK long long Tick count (signed 64-bit integer)
LPOGX float Left point-of-gaze X
LPOGY float Left point-of-gaze Y
LPOGV int Left point-of-gaze valid flag
RPOGX float Right point-of-gaze X
RPOGY float Right point-of-gaze Y
RPOGV int Right point-of-gaze valid flag
FPOGX float Fixation point-of-gaze X
FPOGY float Fixation point-of-gaze Y
FPOGS float Fixation start (seconds)
FPOGD float Fixation duration (time since fixa-

tion start (seconds))
FPOGID int Fixation number ID
FPOGV int Fixation point-of-gaze valid flag
LPCX float Left eye pupil center X
LPCY float Left eye pupil center Y
LPD float Left eye pupil diameter
LPS float Left eye pupil distance (unit less,

from calibration position)
LPV int Left eye pupil image valid
RPCX float Right eye pupil center X
RPCY float Right eye pupil center Y
RPD float Right eye pupil diameter
RPS float Right eye pupil distance (unit less,

from calibration position)
RPV int Right eye pupil image valid

To illustrate the operation of the open eye-gaze API, the follow-
ing listing shows the configuration of the data record and begins
data transmission. The data record includes the record counter and
the fixation POG. For many applications this is the only data re-
quired for basic eye-gaze operation.

CLIENT SEND: <SET ID="ENABLE_SEND_COUNTER" STATE="1" />
SERVER SEND: <ACK ID="ENABLE_SEND_COUNTER" STATE="1" />

CLIENT SEND: <SET ID="ENABLE_SEND_POG_FIX" STATE="1" />
SERVER SEND: <ACK ID="ENABLE_SEND_POG_FIX" STATE="1" />
CLIENT SEND: <SET ID="ENABLE_SEND_DATA" STATE="1" />
SERVER SEND: <ACK ID="ENABLE_SEND_DATA" STATE="1" />
SERVER SEND: <REC CNT="72" FPOGX="0.5065" FPOGY="0.4390"
FPOGD="0.078" FPOGID="468" FPOGV="1"/>
SERVER SEND: <REC CNT="73" FPOGX="0.5071" FPOGY="0.4409"
FPOGD="0.094" FPOGID="468" FPOGV="1"/>
SERVER SEND: <REC CNT="74" FPOGX="0.5077" FPOGY="0.4428"
FPOGD="0.109" FPOGID="468" FPOGV="1"/>

2.3 API Extensions
The open eye-gaze API outlined in this paper corresponds to
version 1.0 of the generic eye-gaze interface, identified by the
MFG ID="generic" and VER ID="1.0" variables. Further
collaborative efforts to improve the open eye-gaze API interface
will correspond to increasing API version numbers. The API may
be extended to include head mounted, or 3D eye-tracking specific
variables [Hennessey and Lawrence 2008] by simply adding new
attributes to the XML command and data tables.

Eye-tracking vendors should always at least support the generic,
1.0, interface, but may also add their own unique additions to the
API under their own MFG ID identifier.

The supported APIs for a given eye-tracker can be listed and
selected using the API SELECT command from Table 2. An ex-
ample listing of available APIs for an eye-tracker is shown below.

CLIENT SEND: <GET ID="API_SELECT" />
SERVER SEND: <ACK ID="API_SELECT" MFG_ID0="generic"
VER_ID0="1.0" MFG_ID1="Mirametrix" VER_ID1="1.0" />
CLIENT SEND: <SET ID="API_SELECT" STATE="1" />
SERVER SEND: <ACK ID="API_SELECT" STATE="1" />

Future versions of the open eye-gaze API, as well as example
source code can be found at the following link: http://www.
mirametrix.com/eye-gaze-api.html.

3 Applications
The eye-gaze interface was tested with a binocular portable eye-
gaze tracker for evaluation. The interface was used for two dif-
ferent applications at two institutions, one integrating with EEG
recording, and another using projection screen eye-tracking. The
projection screen system’s (see Figure 1) application was devel-
oped entirely within the Qt toolkit under Windows XP in MS
Visual Studio 2008. Qt provides an API to underlying TCP/IP
(e.g., QtcpSocket) as well XML parsing functionality (e.g.,
QtXmlSimpleReader), and is easily portable to Linux and Mac
OS X. The application was developed within one 16 week semester.

4 Conclusions
The presented open standard eye-gaze API provides the basic func-
tionality required to integrate eye-gaze into applications. By basing
the API on established and well known standards such as TCP/IP
and XML, the API is accessible on most operating system plat-
forms and programming languages without any additional libraries
or cost. The API provides a standard format for eye-gaze data and
minimizes the need for application developers to deal with eye-
gaze specific issues such as calibration and fixation detection. The
API also provides a mechanism for accommodating future improve-
ments and enhancements to the interface, allowing eye-trackers and
applications to support multiple API versions. The open eye-gaze
API can be used by commercial, low cost and open-source eye-
tracker developers to quickly support all eye-gaze aware applica-
tions based on the API.

The proposed standard provides developers with a simple and
effective method for adding eye-gaze to their applications. Should
eye-tracking companies adopt this standard, the ensuing number of
applications could advance eye-gaze as the next big thing in human
computer interaction.

Figure 1: Consumer experience lab.

References
BABCOCK, J. S. AND PELZ, J. B. 2004. Building a lightweight

eyetracking headgear. In ETRA ’04: Proceedings of the 2004
symposium on Eye tracking research & applications. ACM, New
York, NY, USA, 109–114.

BATES, R., ISTANCE, H., AND ŠPAKOV, O. 2005. D2.2 Re-
quirements for the Common Format of Eye Movement Data.
Tech. Rep. IST-2003-511598: Deliverable 2.2, Communication
by Gaze Interaction (COGAIN).

BATES, R. AND ŠPAKOV, O. 2006. D2.3 Implementation of
COGAIN Gaze Tracking Standards. Tech. Rep. IST-2003-
511598: Deliverable 2.3, Communication by Gaze Interaction
(COGAIN).

DUCHOWSKI, A. T. 2003. Eye Tracking Methodology: Theory and
Practice. Springer-Verlag.

HANSEN, D. W., SKOVSGAARD, H. H. T., HANSEN, J. P., AND
MØLLENBACH, E. 2008. Noise tolerant selection by gaze-
controlled pan and zoom in 3d. In ETRA ’08: Proceedings of
the 2008 symposium on Eye tracking research & applications.
ACM, New York, NY, USA, 205–212.

HENNESSEY, C. AND LAWRENCE, P. 2008. 3d point-of-gaze es-
timation on a volumetric display. In ETRA ’08: Proceedings of
the 2008 symposium on Eye tracking research & applications.
ACM, New York, NY, USA, 59–59.

LI, D., BABCOCK, J., AND PARKHURST, D. J. 2006. openeyes:
a low-cost head-mounted eye-tracking solution. In ETRA ’06:
Proceedings of the 2006 symposium on Eye tracking research
& applications. ACM, New York, NY, USA, 95–100.

SAN AGUSTIN, J., SKOVSGAARD, H., HANSEN, J. P., AND
HANSEN, D. W. 2009. Low-cost gaze interaction: ready to
deliver the promises. In CHI EA ’09: Proceedings of the 27th
international conference extended abstracts on Human factors
in computing systems. ACM, New York, NY, USA, 4453–4458.

http://www.mirametrix.com/eye-gaze-api.html
http://www.mirametrix.com/eye-gaze-api.html

WARD, D. J. AND MACKAY, D. J. C. 2002. Fast hands-free writ-
ing by gaze direction. Nature 418, 6900, 838.

	1 Introduction & Background
	1.1 Cursor tracking
	1.2 Vendor API
	1.3 Open Eye-gaze API

	2 Implementation
	2.1 XML Format
	2.2 Client / Server
	2.3 API Extensions

	3 Applications
	4 Conclusions

